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Irregular Applications Run Out
of Memory Bandwidth

Even irregular applications often admit
straightforward “doall” parallelism

However, irregular data accesses (e.g. A[B[i]]) hit

bandwidth limits

m Irregular applications challenge prefetchers and
cause traffic between caches

m Scheduling for data locality as well as parallelism
IS Important
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Inspector / Executor Scheduling
Strategies [Saltz et al 88]

At runtime, inspect the data access patterns
m Reorder data to improve locality
m Create a new schedule for loops

Create code (executor) that runs the original
computation according to modified schedule

m Execute this schedule repeatedly so as to
amortize inspector

Typical approach for implementing doall
distributed memory parallelism
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What if we schedule across loops to improve
data locality? (Moldyn benchmark example)
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for s=1,T
for t=0,nt
for 1 in sloop0(t)
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Sparse Tiling Across Loops
(new schedule iterates over tiles)
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Another Example:
Iterative Sparse Computations

Break computation that sweeps over mesh/sparse
matrix mnto chunks/sparse tiles

Full Sparse Tiled Task Graph
Iteration Space
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Compare DoAll with Full Sparse Tiling

(Iterative Computation Over Tri-Diagonal Matrix example)
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Benefit of Full Sparse Tiling

Speedup of FST over Blocked Jacobi
thermal2 matrix, 4000 iterations, 880 tiles
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Sounds Great! What is the problem?

Implementing sparse tiling inspectors/executors
by hand is difficult

While automating this process, we first
investigated ways of expressing the arbitrary
task graphs in existing programming models

Arbitrary task graphs fit easily into TBB task
model, but with other programming models
the fit was less natural

When is sparse tiling applicable?
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Outline

Some Existing Parallel Models
Performance Evaluation
Conclusion

Colorado State University ,,



Building on Existing Parallel Models

Parallel execution engines from common
parallel models offer:

m Efficient task queueing

m Thread pool management

m Good dynamic load balancing

® Mature, documented, standards compliant
Many to choose from:

m pThreads, OpenMP, TBB, Cilk Plus
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Bridging Between Task Graphs and
Existing Models

Typically focus on:

= Doall
e.g. OpenMP parallel for, TBB parallel_for

m Fork-join
OpenMP task, cilk_spawn
m TBB now supports task (flow) graphs directly

Needed to execute a task graph:
m Way to determine when a task is ready

Colorado State University ,,



Task Graph Back to Doall

(Frontier)
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Each level set (or frontier) can be executed using doall

parallelism
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Task Graphs Using Frontier

Disadvantages

m Artificial serialization reduces parallelism

m L oad balancing problems

m Adds cost of multiple barriers

Advantages

m Still enables load balancing within a frontier
m Very low dynamic overhead
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Executing Task Graphs Using
Fork-Join

If task is last predecessor
of a successor,
enqueue that successor

If leaf task

@ ~— completes,
atomically
decrement leaf
counter

When leaf count reaches zero, graph is complete
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Outline

Performance Evaluation
Conclusion
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Benchmarks

Sparse Jacobi Solver

m thermal2 matrix from U of F Matrix Market
1.2 Million rows/cols, 120 MB data footprint

m 880 tasks in graph, typical task took 250-1000 ps
m Sparse tiling improves scalability
Simple molecular dynamics app (Moldyn)

m 2|A5 protein from Protein Data Bank
28k atoms, 80k interactions, 2.56 MB data footprint

m 1024 tasks in graph, typical task took 2-8 ps
m Sparse tiling does NOT improve scalability
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Lack of Benefit using Full Sparse
Tiling for Moldyn

Speedup Of FST Over Blocked Moldyn
2IA5 Protein, 10000 iterations, 1024 Tiles
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Methodology

Main question: Does the programming model
affect performance?

Ran on 8 core and 40 core machine

m 3 Core (2x4 core) Xeon E-5450 Harpertown
m 40 Core (4x10 core) Xeon E-4860 Westmere EX

From Intel’s Manycore Testing Lab

Intel icc compiler used
m Version 12.1.3 (20120212)
m icc needed to support Cilk Plus
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Runtime of Jacobi Solver
thermal2 matrix, 4000 iterations, 880 tiles

For Jacobi, all programming models

have similar performance.
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variance.
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Inefficiency Due to Short Tasks
10 Threads in moldyn
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Inefficiency Due to Short Tasks
20 Threads in moldyn
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Inefficiency Due to Short Tasks
40 Threads in moldyn
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Conclusions & Future Work

Sparse tiling parallelization strategies for improved
locality lead to task graph parallelism

Can express and execute these arbitrary graphs on
established parallel programming models with TBB
providing most natural fit

Little difference in performance between models
m Graphs with lightweight tasks perform poorly

m Frontier models are more tolerant of fine tasks
Future Work

m Would like to see natural support for arbitrary task
graphs in emerging programming models

m Develop a model for optimal seed partition size
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Limits to Scalability

System Memory Bandwidth

m Rerunning on 8 cores with no-memory
workload shows nearly perfect linear scalability
(7.8x @ 8 cores)

= No memory load on 40 cores shows linear
scalability (35x @ 39 cores)
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Available Parallelism
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Benefit of Full Sparse Tiling

Speedup of FST over Blocked Jacobi
thermal2 matrix, 4000 iterations, 880 tiles
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Benefit of Full Sparse Tiling

Speedup of FST over Blocked Jacobi
thermal2 matrix, 4000 iterations, 880 tiles
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Benefit of Full Sparse Tiling

Speedup Of FST Over Blocked Moldyn
21A5 Protein, 10000 iterations, 1024 Tiles
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Benefit of Full Sparse Tiling

Speedup Of FST Over Blocked Moldyn
2IA5 Protein, 10000 iterations, 1024 Tiles
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